data module
- data.generate_new_case_study(casestudy: str, config: dict)[source]
Generates a new case study folder with default files and default values.
- Parameters:
casestudy (str) -- name of the case study to be created
config (dict) -- configuration dictionary
- data.generate_new_scenario(casestudy: str, scenario_dir: str, config: dict)[source]
Generates a new scenario folder with default files and default values.
- Parameters:
casestudy (str) -- name of the case study
scenario_dir (str) -- name of the scenario directory to be created
config (dict) -- configuration dictionary
- data.load_config() dict [source]
loads the configuration file
- Returns:
configuration dictionary
- Return type:
dict
- data.load_cost_parameter(casestudy: str, scenario: str, config: dict) dict [source]
loads the cost and parameters for tje scenario from disk.
- Parameters:
casestudy (str) -- name of the case study
scenario (str) -- name of the scenario
config (dict) -- configuration dictionary
- Returns:
dictionary containing the costs and parameters
- Return type:
dict
- data.load_data_from_disk(casestudy: str, scenario: str, config: dict) dict [source]
loads the data required for the optimization model from disk.
- Parameters:
casestudy (str) -- name of the case study
scenario (str) -- name of the scenario
config (dict) -- configuration dictionary
- Returns:
dictionary containing the dataframes and geodataframes for the optimization model
- Return type:
dict
- data.load_model_data(scenario_path: str) dict [source]
Loads the model input data from the scenario path. - not used anymore, use load_data_from_disk instead
- Parameters:
scenario_path (str) -- path to the correct scenario folder
- Returns:
dictionary containing the dataframes and geodataframes for the optimization model
- Return type:
dict
- data.load_solar_gain_data(scenario: str, config: dict) DataFrame [source]
Loads the solar gain data for the scenario from disk.
Solar gain data here referes to the solar irradiation in W/m2 data that is used to calculate the solar gain for the buildings.
- Parameters:
scenario (str) -- name of the scenario
config (dict) -- configuration dictionary
- Returns:
dataframe containing the solar gain data and the time index
- Return type:
pd.DataFrame
- data.load_temp_data(scenario: str, config: dict) DataFrame [source]
Loads the outside temperature data for the scenario from disk.
- Parameters:
scenario (str) -- name of the scenario
config (dict) -- configuration dictionary
- Returns:
dataframe containing the outside temperature data and the time index
- Return type:
pd.DataFrame
- data.prepare_parameter_file(case_study_name: str, scenario_name: str, config: dict)[source]
Prepares the parameter file for the scenario by loading the parameter xlsx file and saving it as a json file.
- Parameters:
case_study_name (str) -- name of the case study
scenario_name (str) -- name of the scenario
config (dict) -- configuration dictionary
- data.read_output_from_disk(case_study_name: str, model_name: str, config: dict) dict [source]
Reads the output data of the optimisation model from the disk for the given case study and model name.
- Parameters:
case_study_name (str) -- name of the case study
model_name (str) -- name of the scenario
config (dict) -- configuration dictionary
- Returns:
dictionary containing the output dataframes from the optimization model
- Return type:
dict